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By extending a method developed recently for the electron gas problem to the case of even-even spherical 
nuclei, corrections to the random phase or harmonic description of the vibrational spectrum have been 
obtained. The calculation, which was based on the conventional pairing plus quadrupole force effective 
Hamiltonian, indicates a systematic sequence of higher approximations taking into account successively 
more complicated phonon-phonon and phonon-quasiparticle pair interactions. The approximation of this 
paper, which includes only the leading phonon-phonon interaction in its effect on the one and two phonon 
states, is in principle rich enough to allow all of the observed orderings of the two-phonon triplet. The case 
of Ni62 has been studied in detail, with all parameters except the strength of the quadrupole force taken 
directly from the work of Kisslinger and Sorensen and the latter constant readjusted so that the improved 
theory gives the energy of the first 2+ state. A parameter-free accord to the ordering (0+, 2+, 4+) of the two-
phonon state is obtained, though the energies are on the whole high. The main defects of the calculation are 
discussed. 

I. INTRODUCTION 

THE last few years have seen the accumulation of 
experimental data on the low-lying spectra of 

even-even nuclei in the vibrational regions.1-4 It ap
pears that, besides the well-determined lowest 2+ state, 
some higher states have also been seen which could be 
assigned to the triplet 0+, 2+, 4+ of the vibrational model 
of nuclei.5-6 But these states are never degenerate and 
the ratios of their energies to the energy of the first 
2+ state deviate from the value 2 of the harmonic 
theory. 

Two attempts to understand these results have re
cently been made. Kerman and Shakin7 proposed a 
phenomenological theory based on the collective model 
of Bohr, adding to the harmonic Hamiltonian terms 
cubic in the quadrupole tensor. The model, which con-
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(1958). See also L.Wilets and M. Jean, Phys. Rev. 102, 788 (1956); 
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tains two parameters describing the anharmonicity, 
gives a reasonable fit to the vibrational spectrum of 
Ni62, but according to the authors, will not reproduce 
the trends in the behavior of the 4+ level. Against this 
model may be voiced the objection that its effective 
Hamiltonian would follow from a microscopic theory, 
such as the one of this paper, at best only in the adia-
batic limit. Since this limit is mostly invalid in the 
vibrational region, the physical significance of the pa
rameters of the theory is somewhat doubtful. 

The second attempt is that of Beliaev and Zelevinsky8 

who developed a microscopic theory of vibrations of 
spherical nuclei using the conventional Hamiltonian 
with two fundamental parameters, namely, the strengths 
of the pairing and quadrupole forces. Their method, 
aside from questions of detail, alluded to at the appro
priate place in the Appendix, corresponds to the adia-
batic limit of the method of this paper. This ques
tionable limit, however, enforces in their theory a 
definite ordering of levels not in general accord with 
experiment. 

In this paper we begin the development of a micro
scopic theory of nuclear vibrations, using the density 
operator formalism for which the random phase ap
proximation is the zeroth-order approximation. The 

5 S. T. Beliaev and V. G. Zelevinsky, Nucl. Phys. 39, 582 (1962). 
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formalism has been developed in a previous paper9 

where the electron gas problem was treated as an ex
ample. The generalization to the case of a finite nucleus 
is straightforward and is in outline the following: 

Let a ay a J be the annihilation and creation operators 
of a particle in the shell-model state a with energy c0. 
The density matrix equation for pap=ajap is, for ex
ample, of the form 

[co— (e«— €&)]<l,2g | p«̂  [ 0) 
= E r^(T5X)u)(l,2g|a7W^^|0), (1.1) 

where (0) is the ground state and |l,2g) is the first 
excited state of interest, the one-phonon state of 
angular momentum 2, ^-component q; co is the excita
tion enprgy. The Hartree-Fock factorization of the 
right-hand side leads to the usual random phase ap
proximation (RPA). There remain, however, terms 
which cannot be decomposed in this way and of which 
we propose to take account by the following standard 
process: 

<l,2g|a7Waxa^|0> 
= E<l,2g|a7^|n ,)(n / |a , tax|0)> (1.2) 

nf 

where | nr) is a complete set of states of the total Hamil-
tonian. We start from the RPA where the only non-
vanishing matrix elements of pap are those between two 
states differing by one phonon, and which can all be 
reduced to the form (l|pajg|0). To reach the first step 
beyond the RPA, we retain in (1.2) only those states 
\n') for which one of the resulting matrix elements in 
the product is the collective one computed from the 
RPA. This means for the example at hand either that 
|w /)=|l,2g) or else \nf) is a two-phonon incoherent 
state: 

\n')=\2JM) 
~( l /v2) Y>(22qf\JM)\ l,2j>® 11,2^); (1.3) 

qqf 

(the first factor on the right is a Clebsch-Gordon 
coefficient) since, in the latter event, 

(l,2q\Pae\2,JM) 
£*>/2(22qM-q\JM)(0\pafi\l,M-q) (1.4) 

is again of the form admitted. 
There now occur, however, new matrix elements in 

which the phonon number differs by zero or by two (the 
crossover matrix element). When these are analyzed by 
the analog of (1.1) and by the same techniques, they 
are found to be coupled to the dominant amplitudes, to 
themselves, and to yet higher amplitudes. The approxi
mation of this paper consists of retaining only the 
coupling back to the dominant amplitudes and of 

9 G. Do Dang and A. Klein, Phys. Rev. 130, 2572 (1963). 

solving the resulting equations, in what amounts to a 
form of collective state perturbation theory. 

In the above summary we have implicitly made 
another approximation to which we adhere in this 
paper, but which will be removed in future applica
tions. The RPA determines in addition to the collective 
state a set of states of quasiparticle pairs, the whole 
forming a complete set for the problem at hand. These 
quasiparticle states can and should be retained in 
general as intermediate states in (1.2). In (temporarily) 
neglecting them, we can say that we are neglecting the 
phonon-quasiparticle coupling compared to the phonon-
phonon interaction. That this is partly justifiable on an 
individual term basis is clear from (1.2) since the ratio 
is at least as small as that of the amplitudes for single 
particle collective E2 transitions and, perhaps as small 
as the square of this ratio. 

There are, of course, a relatively large number of such 
terms, but here, one may be provisionally optimistic 
and anticipate the operation at this state of a random 
phase mechanism. 

We have outlined above the procedure for obtaining 
a corrected theory of the flrst-phonon state. To obtain 
a theory of the two-phonon states we proceed 
analogously, this time starting with an equation for 
{2,JM\pafi\\,2q). A major virtue of the present method 
is that it works with the transition amplitudes of direct 
physical interest in the problem in contrast to the higher 
random phase approximation.10,11 It is also simpler, but 
whether it will prove as accurate remains undetermined. 

In Sec. II, the form of the Hamiltonian is discussed, 
and the transformation from shell-model particles to 
quasiparticles reviewed. The corrections to the first 
2+ state and the splitting of the triplet (0+,2+,4+) are 
calculated as described above in Sees. I l l and IV, re
spectively. It is shown qualitatively that the triplet 
can have all the experimentally observed orderings, 
namely, 

(0+ 2+4+), 

(2+0+4+), 
(0+4+2+). 

Section V deals with the computation of E2 transition 
probabilities, and finally numerical results and dis
cussion for Ni62 are given in the last Sec. VI. 

II. HAMILTONIAN 

Following Kisslinger and Sorensen,12 we suppose that 
the low-energy states of spherical nuclei are eigenstates 
of the Hamiltonian which, in terms of the creation and 
annihilation operators a J, aa of a particle in the shell-

10 H. Suhl and N. R. Werthamer, Phys. Rev. 122, 359 (1961). 
1 1T. Tamura and T. Udagawa, Bull. Am. Phys. Soc. 8, 384 

(1963). We have enjoyed a visit from Dr. Tamura and his de
scription of the application of this method to Cd114. 

12 L. S. Kisslinger and R. A. Sorenson, Kgl. Danske Videnskab. 
Selskab, Mat. Fys. Medd. 32, No. 9 (1960). 
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model state a, is written as: 

- i X Z ^ T 8 V*(aP,yb)aaW<Wy > (2-l) 
^HQ-\-HP-\-H2, 

where €a° is the single-particle energy in the state a. 
The Hamiltonian thus contains two parameters, namely, 
G, the strength of the pairing force, and X, that of the 
long-range quadrupole force. Furthermore, X is the 
chemical potential and sa= (—l)3'*-™". The quadrupole 
force, on the other hand, may be written as13 

V2 (aP,y8)=HqF (acdb)sy(jajcm«-my \ 2q) 
X spijdjbm—m$ 12q), (2.2) 

where, for a separable central interaction, which we 
here assume, 

F(acdb) = g(ac)g(db) (2.3) 

g(ac) = -0(ac)g(ca), *(«;) = (-1)*+*. (2.4) 

We neglect the tensor part of the force, e.g., the spin-
dependent force.14 

With the Hamiltonian (2.1), Kisslinger and Sorensen 
have succeeded in fitting almost all the first 2+ states 
of spherical nuclei with one magic number, and in 
giving qualitatively correct results for the reduced 
transition probabilities.15 

Now, in order to remove the degeneracy of the shell 
model states of (2.1) and determine the chemical po
tential, we make the Valatin-Bogoliubov transformation 

dJ* 

Ua
2+Va2:=l, 

(2.5) 

defining quasiparticle creation and annihilation opera
tors, dj, da which satisfy the usual anticommutation 
relations of fermions. The transformed Hamiltonian 
may be written in the form 

H=U+Hn+H2o+Hqp+H2, (2.6) 

where the first three terms have the usual meanings16 

and Ha? contains products of four quasiparticle opera
tors coming entirely from the pairing force. In the 

following, we neglect Hqv, which, being of short-range 
nature, should not appreciably affect the collective mo
tion coming from H2, though it can modify the quasi
particle spectrum. 

The condition that #20=0 defines u and v. We find 

where 

^a 2 =i{l+[(ea-A)/£ a ]} , 

X 
ea= ea0-2Gv<?+- Zh(S/2ja+l)F(abab), 

(2.7) 

(2.8) 

£ a = [ ( € a - X ) » + A ^ , 

and the gap A is given by the "gap equation" 

G ft, 
-E«—=1, 
2 Ea 

(2.9) 

with fia=!(2yo+l). u* anc* v<? a r e t n e n the proba
bilities of nonoccupancy and occupancy, respectively, of 
the state a and — a by a pair of particles. From this, 
the chemical potential is given by the implicit equation 

2 £ « $ W = tf, (2.10) 

where N is the total number of particles in the shells 
under study. In the case where we assume that there 
is no interference between protons and neutrons in 
giving the collective motion, and we are interested only 
in one kind of particles, say in neutrons, N will then 
usually be the number of neutrons outside closed shells. 

The long-range quadrupole part, on the other hand, 
may be written as 

H2=-ixZ«QqQf, (2.11) 

where the ''quadrupole moment" Qq, in terms of quasi
particle operators, is 

Qq=Zacg(ac)^(ac)Aq^(ac)+v(ac)Bq^(ac)2, (2.12) 

where 

and 

£ fa) = \ (uaVc+UcVa) = £ (ea) , 

rj (ac) = I (uaUc— vavc) = v (ca), 
(2.13) 

Aq^(ac)^Aq^(ac)±(-iyA^q(ac)^~e(ac)Aq^(ca), 

Bq™ (oc) = Bf(ac)± ( - l)«B_q(ac) = ̂ 6(ac)Bq^ (ca), 

Aj(ac)= £ (jajcmam7\2q)dJdy1r==—d(ac)Aqt(ca), 
maWy 

Bq
f(ac) = L sy{jajcma—my\ 2q)djdy= —d(ac)(— l)qB-q(ca). 

mamy 

(2.14) 

13 We use the phase convention of A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 
Princeton, New Jersey, 1957). 

14 L. S. Kisslinger, Nucl. Phys. 35, 114 (1962). 
16 See also T. Tamura and T. Udagawa, Prog. Theoret. Phys. (Kyoto) 26, 947 (1961). 
16 R. Arvieu and M. V&ieroni, Compt. Rend. 250, 995 (1960). See also S. T. Belaiev, Kgl. Danske Videnskab. Selskab, Mat. Fys. 

Medd. 31, No. 11 (1959). y 
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It can be shown that the operators (2.14) satisfy the following commutation rules: 

[^V + W)^« ( + ^)>-L(I+* .J ) ( I+A. '»OS(««W^ 
£A^-Ka'b')4q^(ab)l=[(l+pab)(l+pa>v)8(aa')(-iyXabb')6(ab^ 

U_9-<-)(aV),49
( + )(a6)]=-25(? )g')(-l)5(l+^)5(aa')5(W') 

+ L(l+pai)(l+pa'bdKaa-')(-iyz(abb')d(ab')(22q'q-q'\2q)Bq^^(bb')^, (2.15) 

[£_,. <+> (a'b'),A 9<±> (aft)]= [(l+#.») (1+M')8(«*') ( - l ) « ' * ( a M W ) < 2 2 ? W 12q)Aq^ <*> (6ft')], 

[ 5 V - K « W 9
( ± K ^ ) ] = - [ ( l + ^ & ) ( l - ^ 5 ^ 

[iL./±> (a'ftO,5a<+Kaft)]= - [ ( 1 + ^ ) ( 1 ± ^ ^ 

where 2(a6ft/)==50(aft)PF(2_;a2y6; jV2), with W a Racah coefficient, and the permutation operator pab is defined as 
paif(ab)=-6(ab)f(ba). (2.16) 

We see from the 3rd commutation relation that, in first approximation, all operators commute except the Aq
(:k) 

which satisfy nearly the usual boson commutation relation. This approximation, as will be seen in the next section, 
is the random phase approximation (RPA). 

III. CORRECTION TO THE FIRST 2+ STATE 

A. Random Phase Approximation 

The Hamiltonian with which we study the collective vibrational motion is that for quasiparticles interacting 
through quadrupole forces 

ff.=£«£.rf«H,-ix £ « & & • • (3.1) 

Using the commutation relations (2.15), we obtain the following equations: 

[_He,A ,<•+•> (ab)l=E(ab)Aq<--> (flb)+Za-t>cd.t> Xg(a'b')g(cd)(22q'q-q' 12q) 
X(m)aa'b,){P+(abyb%Aq^(cd)B^q^(bb')+Bq^-Kbb')Aq^(cd)^} 
-Z(cd)v(a'b'){P+(.ab,a'b')lA q, <+> (cd)A „_,,<-> (bb')+A M,<-> (bb')A,. <+> (erf)]} 
+v(cd)Z(a'b'){P+(ab,a'b')lBq^ (cd)Bq_q.^ (bb')+Bq_q,^ (bb')B^ (erf)]} 

-r,(cd)r,(a'b'){P+(ab,a'b%Bq^(cd)Aq_g^(bb')+Ag^-Kbb')B^+Kcd)^}), (3.2) 

[ffc ,^-Haft)] = £ (« f t ) ^ ( + K«&)-4X£(^^ 
Xti{cd)h{a'b'){P+{ab,a'b')[_A,, <+> (crf)54V+) (ftft')+5M,<+) (ftft'M / + ) («*)]} 
- f (erf),, («'&') { ^ (ai^JO D4 *<(+) (cd)A q^ <+> (ftft') +A q_q, <+> (ftft 'M,' ( + ) (erf)]} 
+iK«Ol(«'&/){i>f(«*,ff,i/)PV+) (crf)5M ' (+) (ftft')+£8-«'(+) ( W W + ) («*)]} 

- i K ^ i ^ ' H - P 1 ^ * ' W t f ™ («*M ,-9 ' (+) ( W ) + ^ ,_/+> (bb')B^ (erf)]}), (3.3) 

[H.A(±)(o*)]=e(aft)Be
m(fl*)±E*'&'.<i.'Xg(a,ft')|(«0<22s'?-?'|2?> 

xtt(«0««/fr,){i*(«M'fr')D4 / + ) («*M M ^ ) (ftft'R^ ^ ^ ( W M / + ' M ] } 
+ Kcrf)S?(«'ft'){i>+(^,«'&')[^ 3<(+) (crf)B9_/T>(ftft')+-B,-9< <T> (ftft7)^,'(+) («^)]} 
+^(C r f )?(a ' f t ' ) {P±K^')C5, ' ( + ) (cr f )^9 -3 ' ( T ) (W')+49 -9 ' ( T ) (W')59 ' ( + ) (cr f ) ] } 

+^(crf)r,(o'ftO{i ,±(«V*')C^«'(+)(crf)B9-5'(:F)(W')+5M'(T)(ftft')53'(+)M]}), (3.4) 
where 

and 

E(ab) = Ea+Et, 

e(ab) = Ea—Eb, 

PHab,a'b')= (l±par,)d(,aa')z(abb')6(ab'). (3.5) 

In a first approximation, we consider only the operators Aq
(±) which satisfy the equations 

[Hc,Aq^(ab)~l=uaAq^(ab) = E(ab)Aq^{ab)» 

[ f f„ / ,W(ai ) ] = a)oi49M(flft) = £(aftM9
(+)(fl*)-4XKa*)i(oi) E«< Z(cd)g(cd)Aq^(cd), 

the solution of which is given by the equation 

1 = 4X £ ,* |2(aft)g2(aft)£(aft)C£2(aft)-co0
2]-1. (3.7) 

(3.6) 



V I B R A T I O N A L M O T I O N O F E V E N - E V E N S P H E R I C A L N U C L E I B261 

If the quadrupole force is strong, the phonon frequency w0 is small, m<^Emin(ab)y (adiabatic limit) and is given by 

coo2=[l-4X £ a & e(ab)g*(ab)E--Kab)JJ& E f l 6 ? W W ^ W ] ~ 1 . (3.8) 

Let Cgt be the creation operator of a phonon, of the form 

Q t = £ a & \\+(ab)A , <+> (ab)+\„(ab)A fl<-> (ai)] , X±(ai) = -6(ab)\±(ba). (3.9) 

Then, the ground state and the one-phonon state (the first 2+ state) are defined by: 

Cfl|0>=0, C«t|0>Hl,2?>. (3-10) 

From the condition that Cq, Cfft satisfy the boson commutation rule, namely [CV,Ctff]=6gg', we find 

8E«6X+(fli)Mfl*)=l. (3.H) 
Using (2.15) and (3.10), we have 

(l,2}M/±>(flft)|0>=4Xr(aJ), (3.12) 
and, from (3.6) 

<l ,2 ? | iV+>(o$) |0>=^ (3.13) 
where 

P= {8X2coo Ea& ^2(a%2(^)E(^)[E2(a5)-W0
2]-2}-1 /2 . (3.14) 

Thus, in the random phase approximation, the problem is completely solved, giving the energy and wave func
tion of the first 2+ state. We remark that, in (3.12), we have chosen the matrix elements to be independent of q. 
This choice is arbitrary, but is made once for all, i.e., all other matrix elements must be defined correspondingly. 
We have, for example, 

(0\A-qW(ab)\l,2q)=M- l)*<l,2?M^>(o&)|0>, (3.15) 

which now depend on q by a phase factor. 

B. First-Order Correction 

With the RPA as zero approximation, we want to take account of the remaining terms in Eqs. (3.2) and (3.3), 
using the linearization procedure mentioned in the introduction, namely the spectral decomposition process. In 
the first-order correction, we neglect all terms which require more than one step in the iteration process, for ex
ample terms quadratic in B(±\ because in the RPA, the matrix elements (l,2g|J5tf

(±)(aJ)|0) are zero, and thus 
both of them must be iterated. 

Taking the matrix element of (3.2) and (3.3) between the ground state and the one-phonon state we may write 
them in the form: 

oKl,2$M f l<+>(ai)|0>=£^ 

w( l ,2g |^ ->(a&) |0H£(a^^ 
-~4XZ(ab)g(ab) Zcdr,(cd)g(cd){l,2q\Bq

(+)(cd)\0). (3.16) 
With the definition 

aq^ = ̂ ab^ab)g(ab)(l,2q\Aq^(ab)\0), (3.17) 

the system of Eqs. (3.16) may be reduced to one equation defining w: 

{1-4X Zai, ?2(«S)g2(^)JB(<xi)[£2(a6)-co2]-1}a9(+' 
= E«6 E(ab)Z^-B?(ab)J-^(ab)g(ab)Ma^ («A)+Z«» u\jf-&(ab)l-1Z(ab)g(ab)M 5<+> (ab) 

-4X Za Hab)gi{ab)E{ab)llJ-E*{ab)~yi £«n»(«*)«(«0<l,2?|B8<
+>(«*)|0>. (3.18) 

The right-hand side, which is the correction to the RPA, must be small to assure the validity of the first ap
proximation. We may thus replace in it the true phonon frequency a> by coo, and rewrite (3.18) as 

{1-4X £ B i ?(aiV(a4)£(fli)CJE»(aA)-w8J-1}a,(+>s3Il<+5+3rcW+9l, (3.19) 

where, using (3.2) and (3.3), 

9K(-) = E«w'ci5' 2E(ab)£cJl-E2(ab)yi6(ab')z(abb')ttab)S(ab)Xg(ab')g(cdX22q'q-q'\2q) 
X U(cdMab')(l,2q | £A ,<<+> (cd)Bq„q,™ (bb')+Bq-q>™ (bb')Aq,™ («*)] | 0) 
- £ (cd)n (ab')(l,2q\ IA * <+> (cd)A 9_9- <+> (bb')+A q^ <+> (bb')A t. <+> («*)] 10) 

-r,(cd)r,(ab')(l,2q\[Bt.^{cd)Aq^^(bb')+Aq^+\bb')Bq,^{cd)-}\Q)} , (3.20) 
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^ < + ) = Ea66'Cd,ff<2a)[w2-£2(a*)]-1e(aS')z(«W')Kfl%(«&)Xg(a6')g(crf)(223'5-9'|25) 
X U(c£)i(aW(l,2q \ U ,. <+> (cd)Bt^ <-> (bb')+Bq^ (-> (WM • ( + ) («9310> 
- f («*)* («y )<1,2? | [̂ ,-<+> («*M M . (-> (W) +A g_9- <-> (W)^ a, (+> («*)] 10) 

- i j («^(ayXl .2« |CB, ' ( + , ) («0^e-« ' ( - ) (» ' )+^M ' ( ->CM')^w(«0] |0>}, (3.21) 

9l=Z)(*i/(ai)i(aiXl,2}|J3,W(ai)|0>. (3.22) 

In the spectral decomposition, two intermediate states contribute to the first order, namely, the one-phonon 
state (3.10) and the two-phonon state with J— 2: 

12,210= (l/>0) L*i*2<22g1?212M) \ \,2qi)® 1 W • (3.23) 

For the one-phonon intermediate state, four new matrix elements between one-phonon states need to be calcu
lated. It can be shown from (3.2) and (3.4), however, that in our approximation 

(\,2q\Bq,^(ab)\l,2q~q')=Q, (l,2q\Aq^(ab)\l,2q-q')=0, (3.24) 

so that two of these do not contribute. 
We now calculate the remaining two amplitudes. From (3.4), for example, 

e(a4)<l>2g|B/+>(a4)|l,2(?-8'> 

«E.'»'.J,»Xg(a'y)g(a0<22^Y-^M2«0S(«i)€(«ft'){(l-M)*(««/)*(aW')»(o*') 
X(l,2q\LAg"

(+)(cd)Aq^,^(bb')+At^^(bb')A^^(0(1)111, 2q-q')}. (3.25) 

The decomposition process may be applied to the right-hand side, involving zero- and two-phonon intermediate 
states. Using (3.13), and after straightforward calculations, we find 

<l>2?|JV+>(fli)|l>2<?-g'> 
= 16PX2 5 > z(abb')e(ab')^(ab'Mbb'){22q'q-q'\2q)g(ab')g(bb%w

i+E(ab')E(bb')l 

X{ZEHab')-ooi2lE2(bb')-co^}-1aq^^Y1(ab){22q'q-q'\2q)a/+K (3.26) 

On the other hand, Eq. (3.3) gives: 

E(ab){l,2q\Aq.«Kab)\l,2q-q') 
= 4X$(ab)g(ab) Eca i(cd)g(cd)(\,2q| A q. <+>(cd) 11, 2q-q')+iX^(ab)g(ab) Zed r,(cd)g(cd) Y1(cd){22q'q-q' 12?>a,<+> 

+2E(ab)Xl<-+>(ab)(22q'q-q'\2q)aq<+>, (3.27) 
where 

Xx(±'(afi)-8£-1(aJ) Za>v Xr,{a'b\{a%')[(l+pah)5{aa')z(abb')e(ab')\^{bb')l. (3.28) 

Equation (3.27) can be solved immediately, and we have 

Za* i{ab)g(ab){\,2q\A^+Kab)\ 1, 2q-qf) 
= [1-4X Zod ?2Mg2(^)£-1M)]-1{4X E«* e{ab)gKab)E^(ab) £ „ - ^{a'b^a'b^Y^a'b') 

+ 2 E<* ^ab)g(ab)X1<-+Kab)}(22q'q-q'\2q)aqW^x1(22q'q-q'\2q)aq^ (3.29) 
<1,2«M,/+)(«&)11, 2?-^=y1(fli)<22?'g-8'|25>ae<+> 

= {4K^)Xg(a6)^(^)&i+Ec<i i»(«^g(«0^i(«0]+2JTi(+) (ai)}<22?'3-9' 12q)aq™. (3.30) 

Collecting results, the one-phonon intermediate state contribution to (3.20) and (3.21) is 

am -̂J = - Zuw.cd SE (a&)[£2 (aft) - w2]-^ (ato')<? (aV)Z(ab)g (ab)Xg (ab')g (cd) 
X {£ (cd) {(a&')\_ (erf) Fi (66') -17 (a*)* (o^)X_ (bb') Yx (cd) 

-?(^(a6')L^-(W)>'iM+X-(crf)3'i(66')]}a9
(+)sw1(-^a/+>, (3.31) 

91li<+) = Ea66.c<J8aJC£2(a6)-co2]-12(a66')e(a6')f(a6)g(a6)Xg(a6')g(crfk(a6')X+(66') 
XK(c%i(W')+'?(^)F1(66 ')]a9

( + )^^i ( + ,a» ( + ) . (3.32) 

Next, we calculate the two-phonon contribution. The new matrix elements of A(±) and B(±> are those between 
the ground state and the two-phonon state with spin / = 2, 

From Eq. (3.4), we have 

{2,2g|Sg(±)(a6)|0)-±{F2(T>(a6)-[«(a6)/O2]F2(±'(a6)}vIa9<+>, (3.33) 
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where % is the excitation energy of the second 2+ state, and 

F2<±'(a6) = 8Xi22[02
2-€2(a6)]-1 zZ«-v i(a'b')g(a'b')l(\^pab)Kaa')z(abb')e(ab')\^(bb')']. (3.34) 

The intermediate state which has contributed here is clearly the one-phonon state. 
In the same way, we find from (3.2) and (3.3): 

2Zu^(ab)g(ab)(2,2q\A<l^(ab)\^x^la^ 
= {1-4X E o d f (^)g2(^)£MC£2M)-02

2]-1}-1{4X £ab i?(ab)g*(ab)E(ab)LFJ(ab)-afi-i 
X2Z«'vr,(a'b')g(a'b'){Y^(a'b')-Ze(a'b')/^Y^W^^^ 

+Zat {(«ft)*(fift)8iE(aft).Yi<->(ab)[E?(ab)-02
2]-1}v2a9<+>. (3.35) 

We then find that 

(2,2q\A/+Kab)\0)=E(ab)ZEKab)-Q2i3-1[m(ab)g(abKxi+Z°dr,(^^ 
+U2X1^(ab)+E(ab)X1^(ab)]^2ag^=y2(ab)yJ2aq

<-+\ (3.36) 
and 

(2,2q\AS->(ab)\0)={ZQa/E(ab)fy(ab)+Xi<->(ab)WaJ+>, (3.37) 

and that the two-phonon intermediate state contributes to (3.20) the following quantities: 

9E2(-) = 2w2(-'a3<+)= -Zawcd \6E(ab)i&(ab)-Ji'yiz(abb')e(ab')$(ab)g(ab)Xg(ab')g(cd) 
Xtt(cd)£(ab%-(cd){Y^ (bb')- [e(M')/02]F2<+> (bb')} 
-^(cd)r,(ab')£K-(cd)y2(bb')+\-.(bb')y2(cd)2 

-7 ? (^(a6 ' )X-(W){F 2 ( - ) (^) - [€(^) /0 2 ]F 2
( + ) (^)})a 8

( + ) , (3.38) 

9TC2<+>=Inn(+) aq<+> = Zawcd 16co[E2 (aft) - w2]"^ (abb')6 (ab') {(ai)g (aJ)Xg (a&')g (erf) 
X [£M£ WM"*){ F2<+> (bb')- [«(W)/QJF, w (W)) 
+ K^)r/(^')(X-(crf){C02/JE(W,)]3'2(W')+X1(->(M')}-X+(W)y2(crf)) 

-Jj(crf)5j(a6')\+(W){F2(-)(^)-Le(crf)/02]F2<+>(crf)}]aa(+>. (3.39) 

Using the above results for different matrix elements appearing in the decomposition process, the expression 
(3.22) for 91 can be calculated easily. We have, from (3.4) 

[o>2-ei(ab)JX)2q\Bq
w(ab)\0)= e(ab)n^(ab)+wn^(ab), (3.40) 

where »(±)(a£>) are matrix elements of the nonlinear terms in the equations for B(-±)(ab) between the ground state 
and the one-phonon state. Then 

91= -Zai r,(ab)g(ab)lE*(ab)-^1le(ab)n^(ab)+wn<-+^ab)l=%^+M.^, (3.41) 

where, after some algebra, and again distinguishing contributions from the one- and two-phonon intermediate 
states, we find 

9X1(-)=Ml(-)«/+) = £a66,crf8€(o6)[e2(a&)-co2]-1s(a&y)e(a60^(«%(^)Xg(ay)g(crf) 
X {£ (cd) £ (ab') [X_ (bb')yx (cd )+X_ (cd)y, (bb') ] + {(cd)« (ab%- (cd) Yt(bb') 

+v(cd)Z(ab')\-.(bb')Yi(cd)}aq™, (3.42) 

OTi<-> a 2«2
(-) aa

(+) = Zawcd 16e (a£)[e2 (ad) - a , 2 ] - ^ (flW)0 (<# )i» («&)g (ab)Xg(ab')g (cd) 
X(.$(cd)$(ab')i\-(cd)yi(bb')+\-(bb')y2(Gd)1 
+ St(cd)r,(ab')\~(cd){YS-) ( W ) - [«(W)/0»]IV+) (bb')} 

+v (cd)r,(ab%- (bb') {F,«(cd) - [«(aO/Oj F2
(+) (cd)}) <y+>, (3.43) 

3l!<+)» Wl (+>a,<+>=- D-tv* &o[e2 (<ii) - co2]-^ (abb')d (ab' )n (ab)g (ab)Xg (ab')g (cd) 
x ? W ^ + W [ ? M y i M + ' ) W F 1 M ] } « 8 ( + ) , (3.44) 

9X2«o m 2w2(+) a a (+) = £aH),c(J 1 6 w [y (-a6) - ^ j - i , (ajj')0 (ay), (ab)g(ab)Xg (ab')g (cd) 

X [{(^{(ayXNf (W)y»(«0-X-(«0{ \yi2/E(bb'ny2(bb')+X1^ (bb')}) 
+Z(cd)v(ab')\-(cd){ F2<

+) (MO- [«(»0/Oi]F»<-> (bb')} 
+r,(cd)Z(ab')X>(bb'){Y2(-\cd)-Ze(cd)/n23Yi(+>(cd)}]aq<+K (3.45) 
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We see that, in the above expressions for 9TZ(±) and 31, if we replace X± by their values obtained from the RPA, 
expression (3.13), they are then all linear in, ae

(+). Equation (3.19) can thus be written in the form 

l+a=4X Zab ?(<ti)f(ab)E(ab)t&(ab)-ofiJ'1, (3.46) 

a= - (ml
w+m^~)+n1^+nl^)-2(m2

(+)+m2i~)+m , (3.47) 

where, in order to assure the validity of our approximation, a should be <K1. If it turns out that this is not the case, 
we have to take into account higher order corrections. 

With 
a)=wo+<a', (3.48) 

Eq. (3.46) can be solved approximately to yield 

a=8XaW E«6 e(ab)g2(ab)E(ab)LE2(ab)~a)o2l-2. (3.49) 

We remark that, to be consistent, a should be considered as a function of the true phonon frequency oo instead of 
that given by the RPA, and this has been done in the actual numerical evaluation to be discussed in Sec. VI. 

IV. SPLITTING OF THE TRIPLET 0+ 2+ 4+ 

This section is devoted to an explicit calculation to first order of the splitting of the triplet which is degenerate 
in the RPA. 

Let |l,2Jf— q) and \2,JM) be, respectively, the true one-phonon state and two-phonon state with spin J 
(7=0, 2, 4), and let uj—E/—E2 be the energy difference. We define a matrix element of A q

(+) (ab) between these 
states according to 

CjM(±Hab) = ZA^M-q\JM)(2JM\Aq^(ab)\l7M-q). (4.1) 

From Eqs. (3.2), (3.3), we then have 

{1-4X L ^ ?(a&)^(aft)£(a&)[EHa*)-«J^^ (4.2) 
where 

e™<+> = £fl6 ttab)g(ab)CjM
(+)(ab), (4.3) 

and where Sftl/Mc±) and TfljM are defined in the same way as 2nX(±) and 91 in Sec. I l l with slight modifications 
coming from the definition of CJM{±) in (4.1). For example, WLJM is given by 

9fc/M= £«&. 17(ab)g(ab)(22qM-~q| JM)(2,JM| Bfl<+> (ab) | 1, 2Af-q). (4.4) 

The explicit calculations of the last section can be repeated exactly. As intermediate states, besides the two and 
three phonon states which are the analogs of the one- and two-phonon states of the last section, we have to take 
also into account the contributions from zero- and one-phonon intermediate states. A three-phonon state with spin 
k is of the form 

1 3 M r = ll+2a(J,m~^T^M (J2Mq\k»)\2,JM)® | l,2q), 

a(J,k)=(-l)h(2J+l)W(22k2,JJ), 

where J is the spin of the two-phonon state. We record here the results of lengthy but straightforward calculations. 

£TC^w,o(±) = 5 ( / , 2 ) « 2 ( ± ) e « r ( + ) , 

^ j a r , i ( ± ) = W ' > * i < ± ) < W + ) , (4.6) 

where 

Wj=5W (22/2,22), 

{7=10 E (2k+l)W*(22J2,2k), 
ft=0,2,4 

PJ= E E 5(2k+l)(2kf+l)W(22Jk',22)W(22k%k2) 
£=0,2,4 ft'«»0,2,3,4,6 

X[(2ife+l)(2/+l)]-1/2[l+2a(M')]1 '2Cl+2a(/^')]1/2- (4.7) 

The corresponding expressions are valid for 317^, for example, 
3l jM,o ( ± ' = S(/,2)«2<±>ejM<+>. (4.8) 
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Thus, ^MJM(±) and 91JM are again linear in QJM(+) and Eq. (4.2) can now be put in the form 

1 + ^ = 4 X E«6 e(ab)^(ab)E(ab)lJE?(ab)-<a/]r1, (4.9) 

which, to first order in aj, can be written 

aj= 8 X c W E«& e(ab)g>(ab)E(ab)£E2(ab)-uo2l~-2, (4.10) 

where co/=wj—a><>. The excitation energy of the two-phonon state / is 

# / = « + « / . (4.11) 

We remark finally that from the expressions (m 4 =w/ + ) +^ ( ~ ) ) 

a= — (mi+n1)—2(fft2+n2), 

aj= ~ (Wj+^im+m)- (8(/,2)+p/)(w,+»«) , 

depending on the relative values of (mi+ni) and (7^2+^2), and with numerical values of IF/, $j, pj given by (4.7), 
aj and a can have all possible relative order and signs giving the sequences (1.5). The detailed argument for this 
assertion is given in the Appendix. 

V. ELECTROMAGNETIC TRANSITION PROBABILITIES 

In order to calculate the transition probabilities between different collective states, we need from the beginning 
consider both neutrons and protons simultaneously. Though we have not mentioned this explicitly, our procedure, 
once the isotopic spin is understood in the indices «,#••-, applies to this general case. However, we consider only 
the case of one closed shell nuclei (protons or neutrons) for which the collective oscillations are the effects of outside 
nucleons, with effective charge e. The need to introduce effective charge comes from the fact that, due to the inter
actions between the outside nucleons and the core, the latter is polarized.17 

The quadrupole operator which induces electromagnetic transitions is 

Qq= 5-1/2 ]Ta/3 (a\\er2Y2\\b)s^(jajhma-- Mp \ 2q)aa%, (5.1) 

which becomes, after carrying out the quasiparticle transformation: 

Qq=5~-w £ a & <a|Ier2F2p){|(a5MgW(a5)+t?(ad)BaW(a5)} . (5.2) 

The reduced transition probability between two states | n,kp) and | n'fiy!) is given by: 

B (E2, kn -> *«,) = E ^ I (n',kVI Qq I n,kfx) |2 . (5.3) 

We now show how the considerations of the previous sections yield the matrix elements required in (5.3) to the 
desired accuracy. We take the example of the matrix element (l,2q\Aq

(+)(ab)\0), The procedure is easily seen to 
apply to all other matrix elements. 

Let us go back to Eq. (3.16) and write it in the form 

(l,2q\Aq™(ab)\0)=-Z&(ab)-^ 
-&i(ab)g(ab)E(ab)Ze*S(^ (5.4) 

where 
D(ab) = 4X^ab)g(ab)E(ab)lE2(ab)-^']~1

) (5.5) 
and 

a€(+>=Ea^(^%(^)(l,2gMff<+>(a5)|0). (5.6) 

Since the final equation (3.19) is linear in <£g
(+), we can again use Eq. (3.11) for normalization. We obtain in this 

way to first order, the equation 

or 
<*ag<+>2 £ a & E~1(ab)D*(ab) = 2+p £ a 6 E~1(ab){2^(ab)+Mq^(ab)}D(ab), (5.7) 

ae<+)= © - ^ { l - p - ^ + p X £«& l(<*)g(db)\E?(ab)-<^ , (5.8) 
^=^"£abE~1(ab)D2(ab). 

17 K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, Rev. Mod. Phys. 28, 432 (1956). 
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TABLE I. Comparison of theoretical and experimental values for the one- and two-phonon states of Ni62. The experimental results 
are taken from P. H. Stelson and F. K. McGowan [Bull. Am. Phys. Soc. 4, 232 (1959)]. (The energies are in MeV.) 

E2 EJ EJ 

B CE2, 2'+ ~-> 2+) B (Ea, 2,+ -> 2+) B (JS2, 2
+ -> 0) 

B (E2, 2+ -» 0) B (E2, 2'+ -+ 0) e* 10"48 cm4 

Theory 
X==1.66 

RPA 
X = 1.83 

Exp. 

1.172 

1.172 
1.172 

2.278 

2.344 
2.048 

2.332 

2.344 
2.302 

2.402 

2.344 
2.336 

1.97 

2.00 

42 0.089 

0.070 
0.083 

Thus, according to (5.3), the reduced transition probability 2+—•> 0+ is, with v denned by (a||f2F2p)= vg(ab), 

B (£2, 2+ -> 0+) = SDri (1+0) V , 

j6=pX Ea& £ ( o % ( a i ) [ i F ( a f t ) - t t ^ H ^ • 

In the same way, we have 

where 

B(JE2, / -> 2+) = 2^~ 1 (1+^)V, 

where 0j is given by (5.9) with the Mq
(±)(ab) replaced by the corresponding Mjjf(=fc)(aJ), 

Finally, we have to calculate B(2+f-± 0+). This is given by (3.34), (3.35) and (3.37), namely 

J B ( E * 2 ^ ^ 0 + ) = 2 ^ E - * * ( a W 

(5.9) 

(5.10) 

(5.11) 

VI. NUMERICAL RESULTS FOR NP* 
AND DISCUSSION 

It is clear from Sees. I l l and IV that in order to 
calculate the corrections to the RPA, we need to know 
the shell model single-particle energies. In fact, the 
quantities a and aj depend strongly on these energies, 
and also on the pairing force G which is used to define 
the gap A and the chemical potential X. 

In order to have a semiquantitative idea about the 
first-order correction, we have tentatively considered 
the case of Ni62 which has a closed shell for protons,18 

and treat the anharmonic effect through the outside 
neutrons with the shell model results given by Kiss-
linger and Sorensen.12 This means that we adopt the 
value of the pairing force G given by these authors, 
and keep the quadrupole force as a parameter which 
will be defined such that, together with the correction, 
the first 2+ state is fitted with the experimental value. 

We have solved Eqs. (3.4) and (4.9) on the IBM-1620 
computer of the University of Pennsylvania. The results 
are given in Table I, together with experimental values 
when known. 

The value of X used to fit the first 2+ level is X= 1.660 
which corresponds to coo= 1.36 MeV. 

We see that though the ordering of the two-phonon 
triplet is correctly reproduced, deviations from their 
absolute position are still appreciable especially for the 
0+ two-phonon state. We can advance several reasons 

18 There are, of course, nuclei where the data is more complete, 
for example, those analyzed by Yoshizawa, Ref. 2, but these 
involve both neutrons and protons in unfilled shell and a larger 
number of single-particle levels. Our choice of Ni62 as a first ex
ample has thus been determined by numerical expediency. 

for this discrepancy assuming the adequacy of the 
effective Hamiltonian: 

(a) First, as remarked previously, we ought to use 
''correct" values for single-particle energies. In the 
work of Kisslinger and Sorensen, these have been 
chosen merely to fit the first 2+ state in their approxi
mation which is equivalent to the RPA. 

(b) Next, we should note that it is improbable that 
the collective oscillations are due singly to the 6 outside 
neutrons and we ought to take into account the oscilla
tions of the core. In order to do this, we have to modify 
slightly the schemes of Sees. I l l and IV to take care 
of the interactions between neutrons and protons.15 

(c) Another kind of correction which can also be 
important, at least for medium-weight nuclei, and which 
we have neglected in the above calculations comes from 
the fact that, in the spectral decomposition, besides the 
collective intermediate states, we should also include 
"pair states" as mentioned in the introduction. 

To take the above delinquencies into account re
quires a considerable increase in numerical and/or 
algebraic effort, the fruit of which will be reported in 
a subsequent publication. 

APPENDIX 

In this Appendix, we consider a simplified model of a 
nucleus consisting of one single shell with energy (E/2). 
We shall prove in this particular case an assertion in the 
text, namely, that the first-order correction to the RPA 
could give rise to all observed orderings of the two-
phonon triplet. The quantities m, n defined in the text 
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can be^ expressed in terms of u, v, z, g, which are now single valued. We find 

m 
X c o r E 2 / o>2\ 

(-) = 2<->~0, 

.A - l , X corE 2 / oA / co2\- V a A n 

E E L c A EV \ EV V E V J 

X 2 E 3 / o>\ X4rE/ w V V <A 
W l ( - ) = (U

2-V2)2g2Z2 ( 3 + __ )+[I(^2_^2)2_^2-j^2 ( t ] ( 1 + _ \ 
E co3\ EV Jg c o \ EV V EV 

X E r / co2\ E 2 / co2\/ co2\l 
nx^=(u2-v2)2g2z2 ( l + — ) + — ( 1 ) ( 3 + — ) , 

E colA E V c A E V \ E V J 

w2 (+) = 
X E 

• (u2—v2)2g2z2 , 
E co 

(Al) 

X IE [ E 2 / to2\l 

E cu I * A E V ) 

X E 3 / co2\ 

W2(+) = - ( « * - V * ) ^ ( 1 ) . 
E c A EV 

Furthermore, using numerical values for Wj, f j , and 
pj , we find 

a = — (wi+»i) — 2(ra 2 +# 2 ) , 

a o = ~ 3 (wi+»i) — 2(^2+^2) , ( , 

a 2 = - ( 4 / 7 ) ( w i + n i ) - (16/7)(w2+»2), 

a 4 = - (11/7) ( w i + f n ) - (58/49) (m 2 +^ 2 ) . 

We see that, except for very large values of (m2+m), 
the ordering of the triplet is mainly fixed by (« i+ '» i ) . From (A3) we see that 

(b) however, at the middle of the shell where 
(u2— z>2)c^0 and u2v2~ J, we have 

X 4 £ / oA" 1 / aA 
w i + » i ~ — (uvgz)2 ( 1 ) ( H — J , 

E c A EV V E V 

w2+^2—— (uvgz)2-
X 2E 

E co ' 

(A6) 

Let us consider first the case (co/E)<Kl (adiabatic 
limit). From (Al), we have: 

m1+ni^9(u2-v2)2g2z2(X/E)(E3/^), 

W 2 +^2^- | (w 2 - ^ 2 ) 2 gV(X/E) (E 3 / co 3 ) . 

We see from (A2) that 

ao<a!4<ao<a!2, 

which corresponds to the ordering 

Eo <E4 <EJ2 , 

(£o,47£2)<2 (E*'/Ed>2. 

(A3) 

(A4) 

«2<a<«4<ao, 

which corresponds to 

Ez'KE/KEo', 

(E2'/E2)<2 (Eo//Et)>2. 
(A7) 

This result has not been reached by Beliaev and 
Zelevinsky8 who found that (E2/E2) is always larger 
than 2. In realistic cases, however, the condition 

(A5) (u2—v2)<Kuv is never adequately satisfied and this ex
plains why the ordering EA<EO has never been ob-

This agrees with the results in Ref. 8. Experimental served. Needless to say, between the two limits given 
data in fact show that we are, in realistic cases, far hY (A 5) a n d (A 7)> w e c a n h a v e > f ° r example, 
from the adiabatic limit, and, in general, (a>/E)~0.5. 77 '^-77 '<^ z? ' 
We distinguish two cases: 2 ° 4 ' (^8) 

. N . EQ <E2 <E4 . 
(a) For nearly closed and/or empty shells where 

(u2—v2)2>u2v2
y it can be seen from (Al) that (A5) is An example of this has been found already in the text 

still valid; for the case of Ni62. 


